A new slant on seismic imaging: Migration and integral geometry
نویسندگان
چکیده
A new approach to seismic migration formalizes the classical diffraction (or common-tangent) stack by relating it to linearized seismic inversion and the generalized Radon transform. This approach recasts migration as the problem of reconstructing the earth’s acoustic scattering potential from its integrals over isochron surfaces. The theory rests on a solution of the wave equation with the geometrical-optics Green function and an approximate inversion formula for the generalized Radon transform. The method can handle both complex velocity models and (nearly) arbitrary configurations of sources and receivers. In this general case, the method can be implemented as a weighted diffraction stack, with the weights determined by tracing rays from image points to the experiment’s sources and receivers. When tested on a finite-difference simulation of a deviated-well vertical seismic profile (a hybrid experiment which is difficult to treat with conventional wave-equation methods), the algorithm accurately reconstructed faulted-earth models. Analytical reconstruction formulas are derived from the general formula for zero-offset and fixed-offset surface experiments in which the background velocity is constant. The zero-offset inversion formula resembles standard Kirchhoff migration. Our analysis provides a direct connection between the experimental setup (source and receiver positions, source wavelet, background velocity) and the spatial resolution of the reconstruction. Synthetic examples illustrate that the lateral resolution in seismic images is described well by the theory and is improved greatly by combining surface data and borehole data. The best resolution is obtained from a zero-offset experiment that surrounds the region to be imaged.
منابع مشابه
Improving seismic image in complex structures by new solving strategies in the CO-CRS and the CO-CDS methods
Conventional seismic imaging possesses problem in exposing structural detail in complex geological media. Nevertheless, some recently introduced methods reduce this ambiguity to some extent, by using data based imaging operator or emancipation from the macro-velocity model. The zero offset common reflection surface (ZO-CRS) stack method is a velocity independent imaging technique which is frequ...
متن کاملAn improvement in RTM method to image steep dip petroleum bearing structures and its superiority to other methods
In this paper, first the limitations of the ray-based method and the one-way wave-field extrapolation migration (WEM) in imaging steeply dipping structures are discussed by some examples. Then a new method of the reverse time migration (RTM), used in imaging such complex structures is presented. The proposed method uses a new wave-field extrapolator called the Leapfrog-Rapid Expansion Method (L...
متن کاملAnalyzing the Illumination and Resolution in Seismic Survey Designing
Seismic modeling aids the geophysicists to have a better understanding of the subsurface image before the seismic acquisition, processing, and interpretation. In this regard, seismic survey modeling is employed to make a model close to the real structure and to obtain very realistic synthetic seismic data. The objective of this study is to analyze the resolution and illumination of the fault by...
متن کاملWave propagation in complex media, scattering theory, and application to seismic imaging
Migration is a seismic imaging method that consists of creating a representation of the Earth’s subsurface structure from the recording of seismic waves. Migration is essentially equivalent to solving an inverse scattering problem in structurally complex media. Conventional migration algorithms rely on linearized inversion schemes and assume single-scattering dominance. The primary focus of thi...
متن کاملFast System Matrix Calculation in CT Iterative Reconstruction
Introduction: Iterative reconstruction techniques provide better image quality and have the potential for reconstructions with lower imaging dose than classical methods in computed tomography (CT). However, the computational speed is major concern for these iterative techniques. The system matrix calculation during the forward- and back projection is one of the most time- cons...
متن کامل